

linear model

- most within-S designs have 1 measure per "cell"
- model with subject x treatment interaction has too many parameters
- so, we drop interaction term
- variation becomes part of residuals

$$Y_{ij} = \mu + \alpha_j + \pi_i + (\pi\alpha)_{ij} + \epsilon_{ij}$$

 $Y_{ij} = \mu + \alpha_j + \pi_i + \epsilon_{ij}$ $Y_{ij} = \mu + \pi_i + \epsilon_{ij}$ $H0 : \alpha_1 = \alpha_2 = \dots = \alpha_j = 0$

$$=\frac{(E_R-E_F)/(df_R-df_F)}{E_F/df_F}$$

F

linear model
$$Y_{ij} = \mu + \alpha_j + \pi_i + \epsilon_{ij}$$

 $Y_{ij} = \mu + \pi_i + \epsilon_{ij}$
 $H0 : \alpha_1 = \alpha_2 = \cdots = \alpha_j = 0$ • best-fitting coefficients =>
• evaluate H0 with standard F test
• df_F = (n-1)(a-1)Least-squares coefficients:
 $\hat{\mu} = \bar{Y}_{..}$
 $\hat{\alpha}_j = \bar{Y}_{.j} - \bar{Y}_{..}$
 $\hat{\pi}_i = \bar{Y}_{.i} - \bar{Y}_{..}$
 $\hat{\pi}_i = \bar{Y}_{.i} - \bar{Y}_{..}$
 $F = \frac{(E_R - E_F)/(df_R - df_F)}{E_F/df_F}$

Sphericity

- Compound symmetry is sufficient condition for F statistic to follow F distribution
- but, compound symmetry is not necessary
- a more lenient condition is sphericity:
- sphericity implies that all pairwise differences between dependent variables have the same variance
- when sphericity holds, the F statistic will follow the appropriate F distribution

Estimating Compound Symmetry & Sphericity

- Compound symmetry & sphericity are rarely met perfectly
- when neither holds, the F statistic will follow (approximately) an F distribution with adjusted degrees of freedom
- df adjustment depends on degree of sphericity $(\hat{\epsilon}, ilde{\epsilon})$
- two common measures of sphericity: epsilon-hat & epsilon-tilde
- both are derived from data and vary from 1 (perfect sphericity) to 1/(a-1) (no sphericity)
- adjusted df = epsilon x (a-1), epsilon x (a-1)(n-1)

df adjustment [Conservative F test]

$$\epsilon = \frac{1}{(a-1)} \text{ (minimum value)}$$
$$df = (\epsilon \times (a-1), \epsilon \times (a-1)(n-1))$$
$$df = (1, (n-1))$$

Geisser/Greenhouse & Huynh-Feldt df adjustment

Geisser Greenhouse : $\hat{\epsilon}$ Huynh Feldt : $\tilde{\epsilon}$

- GG & HF estimates of ϵ are derived from variance-covariance matrix
- $df_{adj} = \epsilon x (a-1), \epsilon x (a-1)(n-1)$
- GG slightly more conservative than HF

R Example

aov, aov_car, aov_ez, aov_5, lmer, & lme

aov & aov_car

R Example

aov command (assumes sphericity)

	subj	age	score
51	: 4	a30:12	Min. : 84.0
52	: 4	a36:12	1st Qu.: 98.2
53	: 4	a42:12	Median :107.0
54	: 4	a48:12	Mean :108.0
5	: 4		3rd Qu.:117.2
56	: 4		Max. :133.0
(Oth	er):24		

R Example

aov command (assumes sphericity)

R Example

aov command (assumes sphericity)

> # aov command:

- > # following anova table ASSUMES SPHERICITY:
- > # better because within subj x age made explicit:
- > mw115.aov.01c <- aov(Y~age Error(subj/age)) data=mw115.long)</pre>
- > summary(mw115.aov.01c)

Error: subj

	Df	Sum	Sq	Mean	Sq	F	value	Pr(>F)
Residuals	11	66	524	602	2.2			

Error: subj:age

Df Sum Sq Mean Sq F value Pr(>F) age 3 552 184.00 3.027 0.0432 * Residuals 33 2006 60.79

R Example	
aov_car command in afex package Univariate Type III Repeated-Measures ANOVA Assuming Sphericity	
Sum Sq num Df Error SS den Df F value Pr(>F) (Intercept) 559872 1 6624 11 929.7391 5.586e-12 ***	
Mauchly Tests for Sphericity Test statistic p-value age 0.24265 0.017718	aov_ez & aov_4
Greenhouse-Geisser & Huynh-Feldt Corrections GG eps Pr(>F[GG]) age 0.60954 0.074	
HF eps Pr(>F[HF]) age 0.7248502 0.0635	

R Example

aov_ez command in afex package

> library(afex) > mw115.aov.02b <- aov_ez(id="subj",dv="Y",data=mw115.long,</pre> between=NULL, within="age", observed="age") + > summary(mw115.aov.02b) Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
 Sum Sq num Df Error SS den Df F value
 Pr(>F)

 (Intercept) 559872
 1
 6624
 11
 929.7391
 5.586e-12

 age
 552
 3
 2006
 33
 3.0269
 0.04322
 *
 Mauchly Tests for Sphericity Test statistic p-value 0.24265 0.017718 age Greenhouse-Geisser and Huynh-Feldt Corrections GG eps Pr(>F[GG]) age 0.60954 0.07479. HF eps Pr(>F[HF]) age 0.7248502 0.06353773

R Example

aov_4 command in afex package

> # aov_4: > mw115.aov.02c <- aov_4(Y~age+(1+ageIsubj),mw115.long) > summary(mw115.aov.02c) Univariate Type III Repeated-Measures ANOVA Assuming Sphericity Sum Sq num Df Error SS den Df F value Pr(>F) (Intercept) 559872 1 6624 11 929.7391 5.586e-12 *** age 552 3 2006 33 3.0269 0.04322 * Mauchly Tests for Sphericity Test statistic p-value age 0.24265 0.017718 Greenhouse-Geisser and Huynh-Feldt Corrections GG eps Pr(>F[GG]) age 0.60954 0.07479 . HF eps Pr(>F[HF]) age 0.7248502 0.06353773

	lmer()		
	<pre>> library(lmerTest) > cog.lmer.01 <- lmer(score~age+(1 subj),data=mw115L)</pre>		
lmer & lme	<pre>> anova(cog.lmer.01) # assumes sphericity Type III Analysis of Variance Table with Satterthwaite's method Sum Sq Mean Sq NumDF DenDF F value Pr(>F) age 552 184 3 33 3.0269 0.04322</pre>		
	<pre>> ranova(cog.lmer.01) ANOVA-like table for random-effects: Single term deletions</pre>		
	Model: score ~ age + (1 subj) npar logLik AIC LRT Df Pr(>Chisq) <none> 6 -171.76 355.53 (1 subj) 5 -184.92 379.85 26.318 1 2.896e-07 chi square tests are approximate/conservative</none>		

lmer()	lme() in nlme package
evaluating fixed effect with chi square test [does not assume sphericity]	<pre>defining variance-covariance matrix > library(nlme)</pre>
<pre>> anova(cog.lmer.01) # assumes sphericity Type III Analysis of Variance Table with Satterthwaite's method Sum Sq Mean Sq NumDF DenDF F value Pr(>F) age 552 184 3 33 3.0269 0.04322</pre>	<pre>> # assume independence: > cog.nlme.00 <- lme(score~age,data=mw115L, + random=~1 subj)</pre>
<pre>> cog.lmer.02 <- lmer(score~1+(1 subj),data=mw115L) # remove age</pre>	> # assume compound symmetry:
<pre>> anova(cog.lmer.02,cog.lmer.01) # evaluate change in deviance refitting model(s) with ML (instead of REML) Data: mw115L Models:</pre>	<pre>> cog.nlme.01 <- lme(score~age,data=mw115L, + random=~1 subj, + correlation=corCompSymm(value=0.3,form=~1 subj))</pre>
cog.lmer.02: score ~ 1 + (1 subj) cog.lmer.01: score ~ age + (1 subj) npar AIC BIC loglik deviance Chisq Df Pr(>Chisq) cog.lmer.02 3 371.47 377.08 -182.73 (cog.lmer.01 6 368.71 379.94 -178.36 356.71 8.751 3 0.03279 chi square tests are approximate/conservative	<pre>> # no constraints on between-level correlations: > cog.nlme.02 <- lme(score~age,data=mw115L, + random=~1 subj, + correlation=corSymm(value=c(.3,.3,.3,.3,.3),form=~1 subj))</pre>

Variance Components

> # lmer

> cog.lmer.vca <- VarCorr(cog.lmer.01) # independence > print(cog.lmer.vca,comp=c("Variance","Std.Dev.")) Groups Name Variance Std.Dev. subj (Intercept) 135.348 11.6339 Residual 60.788 7.7967

Variance Components	
<pre>depend on within-S variance-covariance matrix > # lme > VarCorr(cog.nlme.00) # independence subj = pdLogChol(1)</pre>	checking residuals for normality
<pre>> VarCorr(cog.nlme.02) # no constraints subj = pdLogChol(1)</pre>	

Checking residuals

residuals() does not work with aov() objects

> shapiro.test(residuals(cog.aov.02)) # aov_car in afex Data was changed during ANOVA calculation. Thus, residuals cannot be added to original data. residuals(..., append = TRUE) will return data and residuals.

Shapiro-Wilk normality test
data: residuals(cog.aov.02)
W = 0.96965, p-value = 0.2455

> shapiro.test(residuals(cog.lmer.01)) # lmer in lme4

Shapiro-Wilk normality test
data: residuals(cog.lmer.01)
W = 0.98053, p-value = 0.6008

> shapiro.test(residuals(cog.nlme.02)) # lme in nlme

Shapiro-Wilk normality test
data: residuals(cog.nlme.02)
W = 0.97417, p-value = 0.3648

Checking residuals

residuals() does not work with aov() objects

> par(mfrow=c(1,3))

- > qqnorm(residuals(cog.aov.02),main="aov");qqline(residuals(cog.aov.02))
- > qqnorm(residuals(cog.lmer.01),main="lmer/lme4");qqline(residuals(cog.lmer.01))
- > qqnorm(residuals(cog.nlme.02),main="lme/nlme");qqline(residuals(cog.nlme.02))

Linear Contrasts

> dat.mat <- with(mw115,cbind(age.30,age.36,age.42,age.48))
> dat.mat

	age.30	age.36	age.42	age.48	
[1,]	108	96	110	122	
[2,]	103	117	127	133	
[3,]	96	107	106	107	
[4,]	84	85	92	99	
[5,]	118	125	125	116	
[6,]	110	107	96	91	
[7,]	129	128	123	128	
[8,]	90	84	101	113	
[9,]	84	104	100	88	
[10,]	96	100	103	105	
[11,]	105	114	105	112	
[12,]	113	117	132	130	

- use %*% operator to create
- composite scores for each subject
- perform t test on composite scores

Linear Contrasts

[11,]

[12,]

6

33

> lin.trend<-c(-1.5,-0.5,0.5,1.5); • composite score is weighted sum of data points $\sum w_i d_i$ > lin.scores<-dat.mat %*% lin.trend;</pre> for each subject · positive values means increasing linear trend > lin.scores [.1] [1,] 28 • use %*% operator to create [2,] 50 [3,] 16 composite scores for each subject [4,] 26 perform t test on composite scores [5,] -3 [6,] -34 [7,] -4 [8,] 43 [9,] 4 [10,] 15

Local vs Global Estimates of Error

- Significance tests for contrasts may use local or global error term
- global error term comes from original ANOVA
- local error term comes from t test
- Global error term has more degrees of freedom
- may provide more powerful test of null hypothesis

Local vs Global Estimates of Error

- > wLinear <- contr.poly(n=4)[,1]
 > y.mat <- data.matrix(mw115[,1:4])
 > linTrends <- y.mat %*% wLinear</pre>

MS-contrast / sum(wLinear^2) MS-contrast / 1 = 540 > # uses global error estimate
> summary(cog.aov.01)

Error: subj Df Sum Sq Mean Sq F value Pr(>F) Residuals 11 6624 602.2

Error: subj:age Df Sum Sq Mean Sq F value Pr(>F) age 3 552 184.00 3.027 0.0432 Residuals 33 2006 60.79

> MS.err <- 60.79

> df.err <- 33
> (F.global <- 540 MS.err)
[1] 8.883
> 1-pf(F.global,1,df.err)
[1] 0.00537

contrasts with emmeans

uses local error estimate with aov_car() objects

> wLinear <- c(-1.5,-0.5,0.5,1.5) > # aov_car object: > # mw115L.aov.car.01 <- aov_car(score~1+age+Error(subj/age),data=mw115L) > mw115L.aov.car.emm <- emmeans(mw115L.aov.car.01,specs="age") > # uses local estimate of error: > contrast(mw115L.aov.car.emm,method=list(linear=wLinear)) contrast estimate SE df t.ratio p.value linear 15 6.69 11 2.241 0.0466 > 2.241^2 # square t to get value of F statistic [1] 5.022

contrasts with emmeans

uses global error estimate with aov() objects

> wLinear <- c(-1.5,-0.5,0.5,1.5)</pre>

- > # aov object:
- > # mw115L.aov.01 <- aov(score~1+age+Error(subj/age),data=mw115L)</pre>
- > mw115L.aov.emm <- emmeans(mw115L.aov.01,specs="age")</pre>
- > # contrast uses the uses global estimate of error:
- > contrast(mw115L.aov.emm,method=list(linear=wLinear))
- contrast estimate SE df t.ratio p.value
- linear 15 5.03 33 2.981 0.0054

> 2.981^2 # square t to get value of F statistic
[1] 8.886

contrasts with emmeans uses global error estimate with lmer() objects > wLinear <- c(-1.5,-0.5,0.5,1.5) > # lmer object: > # mw115L.lmer.01 <- lmer(score~age+(1!subj),data=mw115L) > mw115L.lmer.01 <- lmer(score~age+(1!subj),data=mw115L) > mw115L.lmer.emm <- emmeans(mw115L.lmer.01,specs="age") > contrast(mw115L.lmer.emm,method=list(linear=wLinear)) contrast estimate SE df t.ratio p.value linear 15 5.03 33 2.981 0.0054 Degrees-of-freedom method: kenward-roger > 2.981^2 # square t to get value of F statistic [1] 8.886