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Typical Experimental Design

• treatment is a fixed factor 

• subjects is a random factor 

• typically, 1 observation per cell 
- not possible to measure within-cell variance 

- cannot distinguish contributions of error and subject 
x treatment interaction to between-cell variation 

• residuals are correlated

treatment 1 treatment 2 treatment 3

subject 1 n=1 n=1 n=1

subject 2 n=1 n=1 n=1

subject 3 n=1 n=1 n=1

subject 4 n=1 n=1 n=1

linear model

• most within-S designs have 1 
measure per “cell” 

• model with subject x treatment 
interaction has too many 
parameters 

• so, we drop interaction term 

- variation becomes part of residuals
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would get di↵erent subjects). A random factor adds variability to our measurements and,
as we shall see, alters the analysis. Finally, unlike in previous designs, the observations in
within-subjects designs are correlated, not independent. In other words, the residuals of
our model are likely to have structure, and such structure will a↵ect our analysis.

One more thing. Traditional methods for analyzing within-subject designs — the meth-
ods described here — are applicable only to balanced designs. In some ways, this is a major
limitation of this approach. For example, the requirement of balanced data means that
we must discard all of the data from a subject even if we lack a measurement in only one
condition. Nevertheless, all of the following analyses assume that the design is balanced.
Also, we will only consider designs with a single, fixed within-subject factor.

11.1 linear models

We start with the model
Yij = µ+ ↵j + ⇡i + (⇡↵)ij + ✏ij (1)

where Yij is the score from subject i in condition j, µ is the intercept, ↵j is the e↵ect
associated with condition j, ⇡i is the e↵ect associated with subject i, (⇡↵)ij is the e↵ect
of the interaction between subject i and condition j, and ✏ij is the error for subject i in
condition j.

We have a problem. The model in Equation 1 has too many parameters. Consider an
experiment that has n = 8 subjects and a = 4 treatments for a total of 32 observations.
Equation 1 includes an intercept (i.e., µ), 3 = a � 1 treatment e↵ects, 7 = n � 1 subject
e↵ects, and 21 = (a�1)(n�1) interaction e↵ects, which add up to a total of 1+3+7+21 = 32
free parameters, which equals the number of observations. Therefore, the error terms in
Equation 1 will be zero. The problem is that we have included an interaction term in our
model, but there is no way to estimate that parameter from our data. Stated another way,
there is no way to determine if the di↵erence between the observation in each cell and the
prediction based on the treatment and subject e↵ects is due to an interaction or error.
Therefore, I will simplify the model by dropping the interaction term

Yij = µ+ ↵j + ⇡i + ✏ij (2)

This interaction-less model is the full model for a design that consists of a single within-
subjects factor and that has only a single measurement per cell. Note that the interaction
e↵ects do not disappear. Instead, they are incorporated into the error term (i.e., the
residuals). By doing this, we are in some sense equating the treatment⇥subjects interaction
and error. I will return to this point below.

The null hypothesis being tested is

H0 : ↵1 = ↵2 = · · · = ↵j = 0 (3)

so a restricted model is
Yij = µ+ ⇡i + ✏ij (4)
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The F test is computed the usual way

F =
(ER � EF )/(df R � df F )

EF /df F
(5)

where EF and ER are SSresiduals from the full and reduced models, respectively. The
degrees of freedom for the residuals in the full model are worth examining. The degrees of
freedom equal the number of observations minus the number of parameters in the model.
You can verify that df F = (n � 1)(a � 1). Thus, df residuals for the model in Equation 2
equals the degrees of freedom for the (deleted) treatment ⇥ subjects interaction term. Once
again, we see that there is a connection between the treatment ⇥ subjects interaction and
error. The degrees of freedom for the reduced model is n(a� 1), so df R � df F = a� 1.

11.2 model coe�cients

When the model in Equation 2 is fit to data, the best-fitting (least-squares) coe�cients
are:

µ̂ = Ȳ..

↵̂j = Ȳ.j � Ȳ..

⇡̂i = Ȳi. � Ȳ..

The intercept, µ, is the mean of all scores. The e↵ect of treatment j (↵j) is the mean of the
scores in treatment j, averaged across all subjects, minus the grand mean. The e↵ect of
subject i (⇡i) is the mean score of subject i, averaged across treatments, minus the grand
mean.

11.3 expected mean squares

Consider, again, Equation 2. Let’s imagine that we fit this model to many sets of data and
calculated the average parameter values. It can be shown1 that the average, or expected,
values of the parameters are the ones listed in Table 1. Notice that the expected value
of MSresiduals is the sum of error variance and a term related to the treatment ⇥ subjects
interaction. This result should not be surprising, because Equation 2 was created essentially
by folding the interaction term into error. It is important for you to realize that the residuals
and the interaction term are perfectly confounded in this design: The residual term is the
interaction and vice versa. For this reason, some statistics packages label the residual term
as Treatment ⇥ Subjects.

1See Kirk (1995) for a derivation of the expected mean squares.
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linear model

• best-fitting coefficients => 

• evaluate H0 with standard F test 

• dfF = (n-1)(a-1)
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The F test is computed the usual way

F =
(ER � EF )/(df R � df F )

EF /df F
(5)

where EF and ER are SSresiduals from the full and reduced models, respectively. The
degrees of freedom for the residuals in the full model are worth examining. The degrees of
freedom equal the number of observations minus the number of parameters in the model.
You can verify that df F = (n � 1)(a � 1). Thus, df residuals for the model in Equation 2
equals the degrees of freedom for the (deleted) treatment ⇥ subjects interaction term. Once
again, we see that there is a connection between the treatment ⇥ subjects interaction and
error. The degrees of freedom for the reduced model is n(a� 1), so df R � df F = a� 1.

11.2 model coe�cients

When the model in Equation 2 is fit to data, the best-fitting (least-squares) coe�cients
are:

µ̂ = Ȳ..

↵̂j = Ȳ.j � Ȳ..

⇡̂i = Ȳi. � Ȳ..

The intercept, µ, is the mean of all scores. The e↵ect of treatment j (↵j) is the mean of the
scores in treatment j, averaged across all subjects, minus the grand mean. The e↵ect of
subject i (⇡i) is the mean score of subject i, averaged across treatments, minus the grand
mean.

11.3 expected mean squares

Consider, again, Equation 2. Let’s imagine that we fit this model to many sets of data and
calculated the average parameter values. It can be shown1 that the average, or expected,
values of the parameters are the ones listed in Table 1. Notice that the expected value
of MSresiduals is the sum of error variance and a term related to the treatment ⇥ subjects
interaction. This result should not be surprising, because Equation 2 was created essentially
by folding the interaction term into error. It is important for you to realize that the residuals
and the interaction term are perfectly confounded in this design: The residual term is the
interaction and vice versa. For this reason, some statistics packages label the residual term
as Treatment ⇥ Subjects.

1See Kirk (1995) for a derivation of the expected mean squares.
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e↵ects, and 21 = (a�1)(n�1) interaction e↵ects, which add up to a total of 1+3+7+21 = 32
free parameters, which equals the number of observations. Therefore, the error terms in
Equation 1 will be zero. The problem is that we have included an interaction term in our
model, but there is no way to estimate that parameter from our data. Stated another way,
there is no way to determine if the di↵erence between the observation in each cell and the
prediction based on the treatment and subject e↵ects is due to an interaction or error.
Therefore, I will simplify the model by dropping the interaction term

Yij = µ+ ↵j + ⇡i + ✏ij (2)

This interaction-less model is the full model for a design that consists of a single within-
subjects factor and that has only a single measurement per cell. Note that the interaction
e↵ects do not disappear. Instead, they are incorporated into the error term (i.e., the
residuals). By doing this, we are in some sense equating the treatment⇥subjects interaction
and error. I will return to this point below.

The null hypothesis being tested is

H0 : ↵1 = ↵2 = · · · = ↵j = 0 (3)

so a restricted model is
Yij = µ+ ⇡i + ✏ij (4)
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The F test is computed the usual way

F =
(ER � EF )/(df R � df F )

EF /df F
(5)

where EF and ER are SSresiduals from the full and reduced models, respectively. The
degrees of freedom for the residuals in the full model are worth examining. The degrees of
freedom equal the number of observations minus the number of parameters in the model.
You can verify that df F = (n � 1)(a � 1). Thus, df residuals for the model in Equation 2
equals the degrees of freedom for the (deleted) treatment ⇥ subjects interaction term. Once
again, we see that there is a connection between the treatment ⇥ subjects interaction and
error. The degrees of freedom for the reduced model is n(a� 1), so df R � df F = a� 1.

11.2 model coe�cients

When the model in Equation 2 is fit to data, the best-fitting (least-squares) coe�cients
are:

µ̂ = Ȳ..

↵̂j = Ȳ.j � Ȳ..

⇡̂i = Ȳi. � Ȳ..

The intercept, µ, is the mean of all scores. The e↵ect of treatment j (↵j) is the mean of the
scores in treatment j, averaged across all subjects, minus the grand mean. The e↵ect of
subject i (⇡i) is the mean score of subject i, averaged across treatments, minus the grand
mean.

11.3 expected mean squares

Consider, again, Equation 2. Let’s imagine that we fit this model to many sets of data and
calculated the average parameter values. It can be shown1 that the average, or expected,
values of the parameters are the ones listed in Table 1. Notice that the expected value
of MSresiduals is the sum of error variance and a term related to the treatment ⇥ subjects
interaction. This result should not be surprising, because Equation 2 was created essentially
by folding the interaction term into error. It is important for you to realize that the residuals
and the interaction term are perfectly confounded in this design: The residual term is the
interaction and vice versa. For this reason, some statistics packages label the residual term
as Treatment ⇥ Subjects.

1See Kirk (1995) for a derivation of the expected mean squares.

3

Least-squares coefficients:



Expected Mean Squares & F tests

• E(MS) for treatment & residuals 
includes subject x treatment 
interaction 

• interaction & error are 
confounded in this design 

• F (treatment) = MStreat / MSresid 

- F = MStreat / MStreat x subj 

• Var Comp (subjects) = (MSS - MSresid) / a 

- assumes that interaction is zero
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Table 1: Expected Mean Squares for a design that has one, fixed within-subjects factor
(treatment).

E↵ect Type E(Mean Square)
treatment fixed �

2
e + �

2
⇡↵ + n

Pa
j=1 ↵

2
j/(a� 1)

subjects random �
2
e + a�

2
⇡

residuals �
2
e + �

2
⇡↵

Table 1 shows that MStreatment also is influenced by the interaction term. Because the
interaction contributes equally to MStreatment and MSresiduals, it is reasonable to conclude
that �2

↵ > 0 when MStreatment > MSresiduals. In other words, a comparison of the models
shown in Equations 2 and 4 provides a reasonable test of the null hypothesis. Notice,
however, it is not reasonable to evaluate the e↵ect of subject by dividing MSsubjects by
MSresiduals. In fact, there is no unambiguous test of the e↵ect of subjects. This lack of
a test is not really a problem, however, because rarely are we interested in showing that
subjects di↵er beyond what is expected by chance.

11.4 sphericity

A one-way, between-subjects ANOVA assumes that error variance is constant across condi-
tions. A similar assumption is made in the one-way within-subjects ANOVA: Specifically,
the assumption is that the error variances for all of the dependent variables are equal.
Another fundamental assumption in the between-subjects ANOVA is that the errors – i.e.,
the ✏ijk’s – are independent. This assumption is reasonable in between-subjects designs
that randomly assign subjects to conditions, but it is less reasonable in within-subjects
studies. Indeed, it is reasonable to expect that errors for a given subject will be correlated,
to some degree, across conditions. Therefore, the independent-errors assumption needs to
be relaxed if we are to conduct a reasonable analysis of data collected in within-subjects
experiments. Instead of assuming independence, we will assume that the errors exhibit
a specific form of dependency, or correlation. In particular, the assumption is that all of
the covariances2 between dependent variables are equal. This combination of assumptions
– equal variances for all dependent variables, and equal covariances between each pair of
dependent variables – is known as the assumption of compound symmetry. The F

calculated in Equation 5 is distributed as an F statistic with df = [(a� 1), (n� 1)(a� 1)]
if the dependent variables exhibit compound symmetry3.

2Given random variables X and Y with expected values E(X) and E(Y ), the covariance of X and Y is
E(XY )� E(X)E(Y ).

3Note that the same assumption is made for data collected in between-subjects designs, except that the
standard assumption is that the covariances are all zero.
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Compound Symmetry
• Each dependent variable has a variance, and each pair of dependent variables has a covariance 

- VAR(X) = E(X2) - E(X)2 [E == “Expectation”] 

- COV(XY) = E(XY) - E(X)E(Y) 

• when all variances are equal (VAR(X) = a) and all covariances are equal (COV(XY)=b), the 
variance-covariance matrix has compound symmetry 

- when COV(XY) = 0, then X & Y are independent and compound symmetry holds 

- when COV(XY) = k (k≠0), then X & Y are not independent but compound symmetry holds 

• the data will exhibit compound symmetry when the correlations between each dependent 
variable are equal and/or when within-S factor has 1 df 

• when compound symmetry exists, then the F statistic for a treatments will follow F distribution 
with df=[(a-1), (a-1)(n-1)] 

Sphericity

• Compound symmetry is sufficient condition for F statistic to follow F distribution 

• but, compound symmetry is not necessary 

• a more lenient condition is sphericity: 
- sphericity implies that all pairwise differences between dependent variables have the same variance 

• when sphericity holds, the F statistic will follow the appropriate F distribution

Estimating Compound Symmetry & Sphericity

• Compound symmetry & sphericity are rarely met perfectly 

• when neither holds, the F statistic will follow (approximately) an F 
distribution with adjusted degrees of freedom 

- df adjustment depends on degree of sphericity 

- two common measures of sphericity: epsilon-hat & epsilon-tilde  

- both are derived from data and vary from 1 (perfect sphericity) to 1/(a-1) 
(no sphericity) 

- adjusted df = epsilon x (a-1), epsilon x (a-1)(n-1)

(✏̂, ✏̃)



df adjustment [Conservative F test]

✏ =
1

(a� 1)
(minimum value)

df = (✏⇥ (a� 1), ✏⇥ (a� 1)(n� 1))

df = (1, (n� 1))

Geisser/Greenhouse & Huynh-Feldt df adjustment

• GG & HF estimates of 𝝐 are derived from variance-covariance matrix 

• dfadj = 𝝐 x (a-1), 𝝐 x (a-1)(n-1) 

• GG slightly more conservative than HF

Geisser Greenhouse : ✏̂
Huynh Feldt : ✏̃

R Example

aov, aov_car, aov_ez, aov_5, lmer, & lme

aov & aov_car



R Example 
aov command (assumes sphericity)

> load(url("http://pnb.mcmaster.ca/bennett/psy710/datasets/mw11_5.rda") )
> summary(mw115L)
      subj     age         score      
 s1     : 4   a30:12   Min.   : 84.0  
 s2     : 4   a36:12   1st Qu.: 98.2  
 s3     : 4   a42:12   Median :107.0  
 s4     : 4   a48:12   Mean   :108.0  
 s5     : 4            3rd Qu.:117.2  
 s6     : 4            Max.   :133.0  
 (Other):24                           

R Example 
aov command (assumes sphericity)

> # aov command:
> # following anova table ASSUMES SPHERICITY:
> mw115.aov.01b <- aov(Y~age+Error(subj),data=mw115.long)
> summary(mw115.aov.01b)

Error: subj
          Df Sum Sq Mean Sq F value Pr(>F)
Residuals 11   6624   602.2               

Error: Within
          Df Sum Sq Mean Sq F value Pr(>F)  
age        3    552  184.00   3.027 0.0432 *
Residuals 33   2006   60.79                 

R Example 
aov command (assumes sphericity)

> # aov command:
> # following anova table ASSUMES SPHERICITY:
> # better because within subj x age made explicit:
> mw115.aov.01c <- aov(Y~age+Error(subj/age),data=mw115.long)
> summary(mw115.aov.01c)

Error: subj
          Df Sum Sq Mean Sq F value Pr(>F)
Residuals 11   6624   602.2               

Error: subj:age
          Df Sum Sq Mean Sq F value Pr(>F)  
age        3    552  184.00   3.027 0.0432 *
Residuals 33   2006   60.79 

R Example 
aov_car command in afex package

> library(afex)
> mw115.aov.02a <- aov_car(Y~age+Error(subj/age),
+                          data=mw115.long, observed="age")
> summary(mw115.aov.02a)

Univariate Type III Repeated-Measures ANOVA Assuming Sphericity

            Sum Sq num Df Error SS den Df  F value    Pr(>F)    
(Intercept) 559872      1     6624     11 929.7391 5.586e-12 ***
age            552      3     2006     33   3.0269   0.04322 *  

can affect measure of 
association strength



R Example 
aov_car command in afex package
Univariate Type III Repeated-Measures ANOVA Assuming Sphericity

            Sum Sq num Df Error SS den Df  F value    Pr(>F)    
(Intercept) 559872      1     6624     11 929.7391 5.586e-12 ***
age            552      3     2006     33   3.0269   0.04322 *  

Mauchly Tests for Sphericity
    Test statistic  p-value
age        0.24265 0.017718

Greenhouse-Geisser & Huynh-Feldt Corrections
     GG eps Pr(>F[GG])  
age 0.60954    0.074

       HF eps Pr(>F[HF])
age 0.7248502 0.0635

aov_ez & aov_4

R Example 
aov_ez command in afex package

> library(afex)
> mw115.aov.02b <- aov_ez(id=“subj",dv="Y",data=mw115.long, 
+                         between=NULL, within=“age", observed="age")
> summary(mw115.aov.02b)
Univariate Type III Repeated-Measures ANOVA Assuming Sphericity

            Sum Sq num Df Error SS den Df  F value    Pr(>F)    
(Intercept) 559872      1     6624     11 929.7391 5.586e-12 ***
age            552      3     2006     33   3.0269   0.04322 *  

Mauchly Tests for Sphericity
    Test statistic  p-value
age        0.24265 0.017718

Greenhouse-Geisser and Huynh-Feldt Corrections
     GG eps Pr(>F[GG])  
age 0.60954    0.07479 .

      HF eps Pr(>F[HF])
age 0.7248502 0.06353773

R Example 
aov_4 command in afex package

> # aov_4:
> mw115.aov.02c <- aov_4(Y~age+(1+age|subj),mw115.long)
> summary(mw115.aov.02c)

Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
            Sum Sq num Df Error SS den Df  F value    Pr(>F)    
(Intercept) 559872      1     6624     11 929.7391 5.586e-12 ***
age            552      3     2006     33   3.0269   0.04322 *  

Mauchly Tests for Sphericity
   Test statistic  p-value
age        0.24265 0.017718

Greenhouse-Geisser and Huynh-Feldt Corrections
     GG eps Pr(>F[GG])  
age 0.60954    0.07479 .

       HF eps Pr(>F[HF])
age 0.7248502 0.06353773



lmer & lme

lmer()
> library(lmerTest)
> cog.lmer.01 <- lmer(score~age+(1|subj),data=mw115L)

> anova(cog.lmer.01) # assumes sphericity
Type III Analysis of Variance Table with Satterthwaite's method
    Sum Sq Mean Sq NumDF DenDF F value  Pr(>F)
age    552     184     3    33  3.0269 0.04322

> ranova(cog.lmer.01)
ANOVA-like table for random-effects: Single term deletions

Model:
score ~ age + (1 | subj)
           npar  logLik    AIC    LRT Df Pr(>Chisq)
<none>        6 -171.76 355.53                     
(1 | subj)    5 -184.92 379.85 26.318  1  2.896e-07

assumes independence/sphericity

chi square tests are 
approximate/conservative

lmer() 
evaluating fixed effect with chi square test [does not assume sphericity]

> anova(cog.lmer.01) # assumes sphericity
Type III Analysis of Variance Table with Satterthwaite's method
    Sum Sq Mean Sq NumDF DenDF F value  Pr(>F)
age    552     184     3    33  3.0269 0.04322

> cog.lmer.02 <- lmer(score~1+(1|subj),data=mw115L) # remove age

> anova(cog.lmer.02,cog.lmer.01) # evaluate change in deviance
refitting model(s) with ML (instead of REML)
Data: mw115L
Models:
cog.lmer.02: score ~ 1 + (1 | subj)
cog.lmer.01: score ~ age + (1 | subj)
            npar    AIC    BIC  logLik deviance Chisq Df Pr(>Chisq)
cog.lmer.02    3 371.47 377.08 -182.73   365.47                    
cog.lmer.01    6 368.71 379.94 -178.36   356.71 8.751  3    0.03279

chi square tests are 
approximate/conservative

lme() in nlme package 
defining variance-covariance matrix
> library(nlme)

> # assume independence:
> cog.nlme.00 <- lme(score~age,data=mw115L,
+                 random=~1|subj)

> # assume compound symmetry:
> cog.nlme.01 <- lme(score~age,data=mw115L,
+                 random=~1|subj,
+                 correlation=corCompSymm(value=0.3,form=~1|subj))

> # no constraints on between-level correlations:
> cog.nlme.02 <- lme(score~age,data=mw115L,
+                 random=~1|subj,
+                 correlation=corSymm(value=c(.3,.3,.3,.3,.3,.3),form=~1|subj))



lme() in nlme package 
defining variance-covariance matrix

> summary(cog.nlme.00) # independent
Random effects:
 Formula: ~1 | subj
        (Intercept) Residual
StdDev:    11.63394 7.796658

Correlation Structure: Independence
 Formula: ~1 | subj 
 Parameter estimate(s):
 Rho 
 0

> anova(cog.nlme.00) # independent
            numDF denDF  F-value p-value
(Intercept)     1    33 929.7391  <.0001
age             3    33   3.0269  0.0432

lme() in nlme package 
defining variance-covariance matrix

> summary(cog.nlme.01) # compound symmetry
Random effects:
 Formula: ~1 | subj
        (Intercept) Residual
StdDev:    10.59335  9.16064

Correlation Structure: Compound symmetry
 Formula: ~1 | subj 
 Parameter estimate(s):
 Rho 
 0.2756218 

> anova(cog.nlme.01) # compound symmetry
            numDF denDF  F-value p-value
(Intercept)     1    33 929.7391  <.0001
age             3    33   3.0269  0.0432

lme() in nlme package 
defining variance-covariance matrix

> summary(cog.nlme.02) # no constraints
Random effects:
 Formula: ~1 | subj
        (Intercept) Residual
StdDev:    11.46896 8.859535
Correlation Structure: General
 Formula: ~1 | subj 
 Parameter estimate(s):
 Correlation: 
  1      2      3     
2  0.496              
3  0.231  0.469       
4  0.023 -0.200  0.644

> anova(cog.nlme.02) # no constraints
            numDF denDF  F-value p-value
(Intercept)     1    33 916.3946  <.0001
age             3    33   2.6743  0.0633

> anova(cog.nlme.00,cog.nlme.01,cog.nlme.02) # 3rd model fits better
            Model df      AIC      BIC    logLik   Test  L.Ratio p-value
cog.nlme.00     1  6 355.5288 366.2340 -171.7644                        
cog.nlme.01     2  7 357.5288 370.0182 -171.7644 1 vs 2  0.00000  1.0000
cog.nlme.02     3 12 352.6203 374.0306 -164.3102 2 vs 3 14.90853  0.0108

Note that this p value is similar to corrected p 
values obtained with anova.

variance components



Variance Components 
calculating from ANOVA table

> summary(mw115.aov.01c)

Error: subj
          Df Sum Sq Mean Sq F value Pr(>F)
Residuals 11   6624   602.2               

Error: subj:age
          Df Sum Sq Mean Sq F value Pr(>F)  
age        3    552  184.00   3.027 0.0432 *
Residuals 33   2006   60.79 

> # variance component for subj:
> (602.2 - 60.79) / 4 # divide by number of levels of within-S factor
[1] 135.4

Variance Components
> # anova variance components
> library(VCA)
> cog.aov.vca <- anovaMM(score~age+(subj),Data=mw115L)
> print(cog.aov.vca,digits=3)
ANOVA-Type Estimation of Mixed Model:
--------------------------------------
[Variance Components]
 Name  DF     SS   MS      VC      %Total SD     CV[%] 
1 total 18.117              196.13  100   14.005 12.96
2 subj  11     6624 602.18  135.34  69.02 11.634 10.77
3 error 33     2006  60.79   60.79  30.99  7.797  7.22 
Mean: 108 (N = 48) 
Experimental Design: balanced  |  Method: ANOVA

> # lmer 
> cog.lmer.vca <- VarCorr(cog.lmer.01) # independence
> print(cog.lmer.vca,comp=c("Variance","Std.Dev."))
 Groups   Name        Variance Std.Dev.
 subj     (Intercept) 135.348  11.6339 
 Residual              60.788   7.7967 

Variance Components 
depend on within-S variance-covariance matrix
> # lme
> VarCorr(cog.nlme.00) # independence
subj = pdLogChol(1) 
            Variance  StdDev   
(Intercept) 135.348   11.633
Residual     60.787    7.796
> VarCorr(cog.nlme.01) # compound symmetry
subj = pdLogChol(1) 
            Variance  StdDev  
(Intercept) 112.219   10.593
Residual     83.917    9.160
> VarCorr(cog.nlme.02) # no constraints
subj = pdLogChol(1) 
            Variance  StdDev   
(Intercept) 131.536   11.468
Residual     78.491    8.859

checking residuals for normality



Checking residuals 
residuals() does not work with aov() objects

> shapiro.test(residuals(cog.aov.02)) # aov_car in afex
Data was changed during ANOVA calculation. Thus, residuals cannot be 
added to original data. residuals(..., append = TRUE) will return data and residuals.

Shapiro-Wilk normality test
data:  residuals(cog.aov.02)
W = 0.96965, p-value = 0.2455

> shapiro.test(residuals(cog.lmer.01)) # lmer in lme4

Shapiro-Wilk normality test
data:  residuals(cog.lmer.01)
W = 0.98053, p-value = 0.6008

> shapiro.test(residuals(cog.nlme.02)) # lme in nlme

Shapiro-Wilk normality test
data:  residuals(cog.nlme.02)
W = 0.97417, p-value = 0.3648

Checking residuals 
residuals() does not work with aov() objects
> par(mfrow=c(1,3))
> qqnorm(residuals(cog.aov.02),main="aov");qqline(residuals(cog.aov.02))
> qqnorm(residuals(cog.lmer.01),main="lmer/lme4");qqline(residuals(cog.lmer.01))
> qqnorm(residuals(cog.nlme.02),main=“lme/nlme");qqline(residuals(cog.nlme.02))

linear contrasts

Linear Contrasts

• create contrast weights 

• contrast transforms multiple within-S measures to single 
composite score for each subject 

- use %*% operator to create composite scores for each subject 

• perform t test or F test on composite scores



Linear Contrasts

• use %*% operator to create 
composite scores for each subject 

• perform t test on composite scores
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11.7 linear comparisons among treatments

The strategy for conducting comparisons among treatments is similar to the one used
previously for between-subjects designs. We start by creating a set of contrast weights
that capture the comparison of interest: there should be one weight for each dependent
measure, and all of the weights must sum to zero. Next, we create a composite score,  i,
for each subject that is simply the sum weighted dependent variables:

 i =
aX

j=1

cjYij

Finally, the values of the composite scores are evaluated using a t.test. If the null hy-
pothesis begin evaluated by our comparison is non-directional, then we use t.test to test
the null hypothesis that the composite scores were drawn from a zero-mean population.
Consider, again, the data analyzed in section 11.5. Let us use a linear trend analysis to
evaluate the hypothesis that scores followed a linear trend across age. The first step is to
transform our data frame into a matrix of numbers:

> dat.mat <- with(mw115,cbind(age.30,age.36,age.42,age.48) )

> dat.mat

age.30 age.36 age.42 age.48
[1,] 108 96 110 122
[2,] 103 117 127 133
[3,] 96 107 106 107
[4,] 84 85 92 99
[5,] 118 125 125 116
[6,] 110 107 96 91
[7,] 129 128 123 128
[8,] 90 84 101 113
[9,] 84 104 100 88
[10,] 96 100 103 105
[11,] 105 114 105 112
[12,] 113 117 132 130

The variable dat.mat represents the data as a four-column matrix: each row contains the
data from one subject, and each column contains the data from a single age. Next, we
create the contrast weights and then the composite scores using the matrix multiplication
operator %*%. Note that the order of the terms is important here, so pay attention!

> lin.trend<-c(-1.5,-0.5,0.5,1.5);

> lin.scores<-dat.mat %*% lin.trend;

> lin.scores
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Linear Contrasts

• use %*% operator to create 
composite scores for each subject 

• perform t test on composite scores
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previously for between-subjects designs. We start by creating a set of contrast weights
that capture the comparison of interest: there should be one weight for each dependent
measure, and all of the weights must sum to zero. Next, we create a composite score,  i,
for each subject that is simply the sum weighted dependent variables:

 i =
aX

j=1

cjYij

Finally, the values of the composite scores are evaluated using a t.test. If the null hy-
pothesis begin evaluated by our comparison is non-directional, then we use t.test to test
the null hypothesis that the composite scores were drawn from a zero-mean population.
Consider, again, the data analyzed in section 11.5. Let us use a linear trend analysis to
evaluate the hypothesis that scores followed a linear trend across age. The first step is to
transform our data frame into a matrix of numbers:

> dat.mat <- with(mw115,cbind(age.30,age.36,age.42,age.48) )

> dat.mat

age.30 age.36 age.42 age.48
[1,] 108 96 110 122
[2,] 103 117 127 133
[3,] 96 107 106 107
[4,] 84 85 92 99
[5,] 118 125 125 116
[6,] 110 107 96 91
[7,] 129 128 123 128
[8,] 90 84 101 113
[9,] 84 104 100 88
[10,] 96 100 103 105
[11,] 105 114 105 112
[12,] 113 117 132 130

The variable dat.mat represents the data as a four-column matrix: each row contains the
data from one subject, and each column contains the data from a single age. Next, we
create the contrast weights and then the composite scores using the matrix multiplication
operator %*%. Note that the order of the terms is important here, so pay attention!

> lin.trend<-c(-1.5,-0.5,0.5,1.5);

> lin.scores<-dat.mat %*% lin.trend;

> lin.scores
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[,1]
[1,] 28
[2,] 50
[3,] 16
[4,] 26
[5,] -3
[6,] -34
[7,] -4
[8,] 43
[9,] 4
[10,] 15
[11,] 6
[12,] 33

Finally, we use t.test to evaluate the null hypothesis that the linear trend scores are
drawn from a distribution with a mean of zero:

> t.test(lin.scores)

One Sample t-test

data: lin.scores
t = 2.2414, df = 11, p-value = 0.04659
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
0.2701827 29.7298173

sample estimates:
mean of x

15

The t test is significant (t = 2.24, df = 11, p = 0.046) so we reject the null hypothesis that
our composite scores, which represent the linear trend across age, are zero. Note that in
this case the sphericity assumption must be valid because our comparison is a single degree
of freedom test. Hence, there is a significant linear association between score and age.

It is also possible to do directional tests of our hypothesis. For example, here is how
we could test the hypothesis that there is an increasing linear trend with age.

> t.test(lin.scores,alternative="greater")

One Sample t-test

data: lin.scores
t = 2.2414, df = 11, p-value = 0.0233
alternative hypothesis: true mean is greater than 0
95 percent confidence interval:
2.981266 Inf

12

∑ widi

• composite score is weighted sum of data points 
for each subject 

• positive values means increasing linear trend

Linear Contrasts

• use %*% operator to create composite 
scores for each subject 

• perform t test on composite scores
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The t test is significant (t = 2.24, df = 11, p = 0.046) so we reject the null hypothesis that
our composite scores, which represent the linear trend across age, are zero. Note that in
this case the sphericity assumption must be valid because our comparison is a single degree
of freedom test. Hence, there is a significant linear association between score and age.

It is also possible to do directional tests of our hypothesis. For example, here is how
we could test the hypothesis that there is an increasing linear trend with age.

> t.test(lin.scores,alternative="greater")

One Sample t-test

data: lin.scores
t = 2.2414, df = 11, p-value = 0.0233
alternative hypothesis: true mean is greater than 0
95 percent confidence interval:
2.981266 Inf
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linear trend 
is significant

with our weights, positive value means 
that the linear trend is increasing

Local vs Global Estimates of Error

> wLinear <- contr.poly(n=4)[,1]
> y.mat <- data.matrix(mw115[,1:4])
> linTrends <-  y.mat %*% wLinear
> # uses local error estimate
> t.test(linTrends)

One Sample t-test

data:  linTrends
t = 2.2414, df = 11, p-value = 0.04659
H1: true mean is not equal to 0
95 percent confidence interval:
  0.1208294 13.2955785
sample estimates:
mean of x 
 6.708204 

> # uses local error estimate 
> summary(aov(linTrends~1),intercept=T)
            Df Sum Sq Mean Sq F value Pr(>F)
(Intercept)  1    540   540.0   5.024 0.0466
Residuals   11   1182   107.5 



Local vs Global Estimates of Error

• Significance tests for contrasts may use local or global error term 

- global error term comes from original ANOVA 

- local error term comes from t test 

• Global error term has more degrees of freedom 

- may provide more powerful test of null hypothesis

Local vs Global Estimates of Error
> wLinear <- contr.poly(n=4)[,1]
> y.mat <- data.matrix(mw115[,1:4])
> linTrends <-  y.mat %*% wLinear

> # uses local error estimate
> summary(aov(linTrends~1),intercept=T)
            Df Sum Sq Mean Sq F value Pr(>F)
(Intercept)  1    540   540.0   5.024 0.0466
Residuals   11   1182   107.5 

> # uses global error estimate
> summary(cog.aov.01)

Error: subj
          Df Sum Sq Mean Sq F value Pr(>F)
Residuals 11   6624   602.2               

Error: subj:age
          Df Sum Sq Mean Sq F value Pr(>F)
age        3    552  184.00   3.027 0.0432
Residuals 33   2006   60.79
               
> MS.err <- 60.79
> df.err <- 33
> ( F.global <- 540/MS.err )
[1] 8.883
> 1-pf(F.global,1,df.err)
[1] 0.00537

MS-contrast / sum(wLinear^2) 
MS-contrast / 1 = 540

> wLinear <- c(-1.5,-0.5,0.5,1.5)
> # aov_car object:
> # mw115L.aov.car.01 <- aov_car(score~1+age+Error(subj/age),data=mw115L)
> mw115L.aov.car.emm <- emmeans(mw115L.aov.car.01,specs="age")
> # uses local estimate of error:
> contrast(mw115L.aov.car.emm,method=list(linear=wLinear))
 contrast estimate   SE df t.ratio p.value
 linear         15 6.69 11   2.241  0.0466

> 2.241^2 # square t to get value of F statistic
[1] 5.022

contrasts with emmeans 
uses local error estimate with aov_car() objects

contrasts with emmeans 
uses global error estimate with aov() objects

> wLinear <- c(-1.5,-0.5,0.5,1.5)
> # aov object:
> # mw115L.aov.01 <- aov(score~1+age+Error(subj/age),data=mw115L)
> mw115L.aov.emm <- emmeans(mw115L.aov.01,specs="age")
> # contrast uses the uses global estimate of error:
> contrast(mw115L.aov.emm,method=list(linear=wLinear))
 contrast estimate   SE df t.ratio p.value
 linear         15 5.03 33   2.981  0.0054

> 2.981^2 # square t to get value of F statistic
[1] 8.886



> wLinear <- c(-1.5,-0.5,0.5,1.5)
> # lmer object: 
> # mw115L.lmer.01 <- lmer(score~age+(1|subj),data=mw115L)
> mw115L.lmer.emm <- emmeans(mw115L.lmer.01,specs="age")
> contrast(mw115L.lmer.emm,method=list(linear=wLinear))
 contrast estimate   SE df t.ratio p.value
 linear         15 5.03 33   2.981  0.0054

Degrees-of-freedom method: kenward-roger 
> 2.981^2 # square t to get value of F statistic
[1] 8.886

contrasts with emmeans 
uses global error estimate with lmer() objects


